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Abstract--Computer simulation is a powerful tool for analyzing the geometry of three-dimensional
microstructure. A computer simulation model is developed to represent the three-dimensional microstruc-
ture of a two-phase particulate composite where panicles may be in contact with one another but do not
overlap significantly. The model is used to quantify the "'connectedness'" of the particulate phase of a
polymer matrix composite containing hollow carbon particles in a dielectric polymer resin matrix. The
simulations are utilized to estimate the morphological percolation volume fraction for electrical
conduction, and the effective volume fraction of the particles that actually take part in the electrical
conduction. The calculated values of the effective volume fraction are used as an input for a self-consistent
physical model for electrical conductivity. The predicted values of electrical conductivity are in very good
agreement with the corresponding experimental data on a series of specimens having different particulate
volume fraction.

INTRODUCTION

Physical properties of multi-phase solids often

depend on the arrangement of features in three-

dimensional microstructural space. For example,

fluid flow through a porous solid depends on the

connectivity of the pores [I]. Similarly, electrical
conductivity of a two-phase composite containing

particles of a conductive material in a dielectric

matrix critically depends on "connectedness" of the

conducting particulate phase.

Two important aspects of the spatial arrangement

of the microstructural features are: (i) distribution of

distances between particles (or features); and (ii)
"connectedness" of the microstructural features in

three-dimensional microstructural space. Several

rigorously defined and physically meaningful
descriptors of inter-particle distance distributions are

available (for example, nearest neighbor distribution

function, radial distribution function, etc. [2-4]). The

choice of a specific descriptor obviously depends on
the physical phenomena or property under investi-

gation. Recently, an efficient and practical digital

image analysis technique has been developed for

statistically reliable estimation of inter-particle

distance distributions observed in a metallographic

plane [5]. The three-dimensional inter-particle
distance distributions can be estimated from the

corresponding planar data under certain conditions

[6, 7]. On the other hand, practical experimental

techniques are not available for estimation of the

attributes related to the "connectedness" of micro-

structural features in 3D space, from the observations

on the metallographic sections. Further, the

attributes of the "connectedness'" that are of

relevance to the phenomena, such as electrical

conduction, are not well understood. In this context,

the topological connectivity of the particle surfaces

(i.e. genus or first Betti number) may not represent the

relevant aspect of the particle connectivity. This leads

to difficulties in establishing meaningful quantitative
correlations between the microstructure and electrical

conductivity of two-phase (or multi-phase) solids

containing particulate of a conducting phase in a

dielectric matrix of anotl_r, phase.
Computer simulation '0f. three-dimensional micro-

structures is an attractive alternative for studying the

spatial arrangement of particles (features), and for

developing the microstructural parameter(s) that

represents the relevant aspects of the "connected-

ness". A microstructure based physical model for
electrical conductivity of two-phase solids can be

developed from the resulting information. This

paper reports a new computer simulated model of

three-dimensional microstructure containing poly-

dispersed spherical particles that may be in mutual
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contact, but do not overlap significantly. The simu-

lation is used to predict the percolation threshold for

the formation of continuous particle chains, to com-

pute the volume fraction of the particles that partici-

pate in the electrical conduction (called effective
volume fraction), and to develop a simple self-

consistent model for the electrical conductivity of the

polymer matrix composite containing a population of

hollow spherical carbon particles in the dielectric

polymeric matrix of Araldite. The predictions of the

model are in good agreement with the experimental

data on electrical conductivity of a series of specimens

that have different volume fraction of the particulate

phase, but the same particle size frequency function.

The aspects of the "connectedness" of the carbon

particles that are of relevance to the electrical conduc-

tion are represented by effective particulate volume

fraction, which is simply the volume fraction of the

particles that contribute to the electrical conduction.

The global particulate volume fraction and the par-

ticle size distribution function are the input for the

computer simulation of the three-dimensional micro-

structure. Experimental measurements of the nearest

neighbor distribution and radial distribution function

of particles present in a random metallographic

plane, obtained from digital image analysis, are in

good agreement with the corresponding attributes of

a random two-dimensional plane through simulated

three-dimensional microstructure, demonstrating

that the simulated microstructures are a reasonable

representation of actual microstructures.

A brief background on the characterization of

spatial arrangements of particles and computer simu-

lation of microstructures is given in the next section.

The new computer simulated microstructure model

and experimental work are presented in the sub-

sequent sections. Finally, the self-consistent micro-

structure based physical model for electrical

conductivity of a two-phase solid is presented, and

the predictions of this model are compared with the

experimental data on electrical conductivity.

numbers (say, l-n, I-m and I-p), three numbers (one

from each set) are chosen at random. These three

numbers (say, X0, Y0, Z0) constitute the coordinates

of the center of the first sphere. Once the radius of

this sphere (say, R0) is specified (according to some
fixed scheme), the equation of this sphere is known,

and the first particle is essentially placed in the box.

One now chooses the center and the radius of the

second "probable" particle by using the same scheme.

From the known equations of the surfaces of the first

and the second sphere, it can be detected if these two

spheres intersect. If they intersect, then the second

particle is rejected, new center coordinates and radius

are chosen using the same algorithm, and the process

is repeated till the second particle is located such that

it does not intersect the first one. Using the same

logic, the third particle is chosen so that it does not

intersect the first two particles. The process is re-

peated till the space is filled with the required volume

fraction of the spheres having preset size distribution,

The microstructure is thus represented by a set of

equations of the surfaces of non-overlapping spheres.

Figure 1 shows a schematic two-dimensional micro-

structure generated by the "hard sphere" (i.e. hard

"circles" in 2D) model. The "hard sphere" model is

useful for simulating a microstructure consisting of

uniformly distributed spherical particles that do not

touch one another. Another popular microstructure

model is the Boolean model, where randomly dis-

tributed convex particles (for example, spheres) are

allowed to freely overlap to any extent [9]. Figure 2

shows a schematic representation of a two-dimen-

sional microstructure generated by the Boolean

model. Several more sophisticated models are avail-

able in the literature [10, 11]. However, such models

are designed for specific applications, and they re-

quire powerful mainframe computers.

The particulate volume fraction and size distri-

bution are input parameters for all the simulated
microstructures. It follows that the microstructures

simulated from different models differ mainly in the

BACKGROUND

Computer simulation of microstructures

For computer simulation of any modeled micro-

structure, the first step is the representation of the

microstructural space by a set of regularly and closely

spaced discrete coordinate points (X,, Y,, Z,). This is

equivalent to the generation of a three-dimensional

"graph paper". The total number of coordinate

points depends on the volume of the space to be

simulated, and the distance between the consecutive

points. Once the microstructural space is simulated,

the particles (or features) are placed in this "box" one

by one: the size, shape and location of the particles

are chosen according to a set of rules that make up

............ ,_,-_ Th,_ most simple scheme is
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Fig. 2. A two-dimensional Boolean model microstructure.

second order attributes such as spatial arrangement

of particles, rather than the first order parameters

such as volume fraction. Thus, a quantitative com-

parison of the relevant aspects of spatial arrangement

of particles in the true and simulated microstructures

is essential for choosing a specific model to represent

a given microstructure. The spatial arrangement of

particle section centers in a random plane through
three-dimensional simulated microstructure can be

quantified in a straight-for_'ard manner. A compari-

son with the corresponding attributes measured on a

random metallographic plane through true micro-

structure provides an objective criterion to verify

whether a simulation model closely represents the

true microstructure. The three-dimensional spatial

arrangement of particles in true microstructure can

then be approximated by the corresponding arrange-
ment in the simulated three-dimensional microstruc-

lure: this is the main objective of the computer

simulations in the present study.

Descriptors of spatial arrangement of particle centroids

An important descriptor of the spatial distribution

of particle centroids is the nearest neighbor distri-

bution function [2]. It is described by the probability

density function P(R) such that P(R).dR is the

probability that there is no other particle centroid in

a sphere of radius R around an arbitrary particle, and

that there is at least one particle centroid in the

spherical shell of radii R and (R + dR). In a metallo-

graphic plane (two-dimensional section) through

three-dimensional microstructure, the nearest neigh-

bor distribution function of particle section centers is

defined by the probability density function 6(r) such

that 6(r)'dr is the probability that there is no other

particle section center in a circle of radius r around

an arbitrary particle section, and that there is at least

one particle section center in a circular shell of radii

r and (r + dr).

Another important descriptor of the spatial distri-

bution of particle centroids is the radial distribution

function [2-4]. It is described by the function G(R)

such that nR2"Nv'G(R)'dR is equal to the average

number of particle centroids in a spherical shell of

radii R and (R + dR) around an arbitrary particle

centroid. N, is the average number of particle cen-

troids per unit volume of three-dimensional micro-

structure. Therefore, for a completely random

distribution of point particles, G(R) is equal to one.

Analogously, the radial distribution function in a

metallographic plane, g(r), is defined such that

2rtr.N^.g(r).dr is equal to the average number of

particle section centers in a circular shell of radii r and

(r + dr) around an arbitrary particle section. N A is

the average number of particle section centers per

unit area of metallographic plane.

A practical and efficient digital image analysis

technique is available for experimental estimation of

the radial distribution function g(r) and the nearest

neighbor distribution 6(r) in a metallographic plane

[5]. These functions can also be calculated for a

random plane through simulated three-dimensional

microstructure. If the simulated microstructure is a

good approximation of the true microstructure, then

experimental measurements of g(r) and _5(r) func-

tions mus_ be in good agreement with those calcu-
lated for the simulated modeled microstructure. In

such a case, the connectivity and other attributes of

connectedness of the particles in true three-dimen-

sional microstructure (which cannot be measured)

can be approximated by the corresponding values
for the simulated modeled three-dimensional micro-

structure (which can be calculated). This is the ap-

proach adopted in the present investigation.

EXPERIMENTAL WORK

Material

The experiments were performed on a series of

specimens of polymer matrix composite consisting of

hollow spherical carbon particles dispersed in a hard-

ened polymer resin matrix of Araldite. The particu-

late volume fraction was varied from 0.16 to 0.47, but

the particle size frequency function was the same for

all the specimens. The hollow spherical carbon par-

ticulate powder was supplied by Carbosphere Inc.;

the average particle diameter was 10.6 gm. The liquid

polymeric resin (Araidite) and the hardener were

supplied by Ciba Geigy. The appropriate proportions

of the particulate powder, the liquid Araldite resin

and the hardener were thoroughly mixed to ensure

uniform distribution of the carbon particles, and the

mixture was heated in vacuum to degas and to

decrease the viscosity of the polymer. The molds were

slowly rotated during the hardening period of the

polymer (which is approximately l0 h) to avoid any

segregation of the particles due to gravitational

effects.

Electrical conductivity measurements

The resistivity (and therefore, the conductivity) was

measured by using the well-known "'three point"
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Fig. 3. Microstructure of a typical composite specimen observed on a representative metallograhic plane
(particulate volume fraction = 0.29); magnification, 500 x.

resistivity measurement technique. Cylindrical speci-

mens of 14.25 mm diameter and 20 mm length were

used for the conductivity measurements. Silver based

conductive paint was coated on both the flat ends of

the specimens, and a constant electrical current was

applied across these two ends. A 1 mm wide circular

ring was painted (with conductive paint) at about one

fourth of the specimen length from each flat end, and

the potential drop was measured across these two

segments. The conductivity was calculated from the

measured potential drop and the known constant

applied current.

Metallography

The specimens were cut, mounted and polished on

a series of SiC polishing papers, and then followed by

polishing on diamond cloths on automatic polishing

wheels. Figure 3 shows a typical microstructure re-

vealed in this manner. Note that the carbon particles

are round, and there is a range of particle sizes. In

Fig. 3, the dark regions represent the "'hollows"

created by intersections of polishing plane with the

hollow carbon particles; the bright regions are due to

the near tangential intersections.

Digital image analysis

In this material, the contrast between the particles

and the matrix is not very good, and therefore several

image editing steps are necessary to develop the

appropriate image contrast for subsequent measure-

ments on the digitized images [12]. The image analysis

was carded out on the images at the microscope

magnification of 500 x. At this magnification, the

observed particle sizes are about 50 pixels, which

allows the measurements of particle sizes and inter-

particle distances with an error of less than +5°/,.

The measurements were performed on more than 100

fields of view on each specimen to ensure sampling of

at least 3000 particles from each specimen. The

centroid coordinates (referred to the same origin) and

the particle section size of each particle were

measured using an image analysis procedure de-

scribed in detail elsewhere [5]. From these data, the

radial distribution function and nearest neighbor

distribution function of the particle section centroids

in the metallographic plane were estimated (see Ref.

[5] for details). These descriptors quantify the spatial

arrangement of the particle sections in the metallo-

graphic plane. Figures 4 and 5 show the radial

IX3T
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Fig.4. Nearestneighbordistributionfunctionin metallo-
graphic plane.
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Fig. 5. Radial distribution function in metallographic plane.

distribution function and the nearest neighbor distri-

bution function obtained in this manner. The particle

section sizes in the metallographic plane were cast

into the section size distribution, and the true three-

dimensional particle size distribution was estimated

from these data by using stereological techniques [I 3].

Figure 6 shows the true particle size distribution

estimated in this manner together with the size

distribution of the carbon particulate powder

measured directly by laser granulometry. An excellent

agreement between the two distributions shows

that the measurements on about 3000 particles

yields an excellent representative sampling of the
microstructure.

NEW COMPUTER SIMULATED MICROSTRUCTURE
MODEL

In the microstructure of the present composite, the

carbon particles are uniformly distributed in the

matrix. These particles may (and do) touch one

another, but they do not overlap significantly, i.e.

they remain rigid spheres. A valid microstructure

model must allow for these simple geometric aspects

of the true microstructure. It follows that the "hard

core sphere" model, where the particles are not

allowed to touch one another (see Fig. i) is not

applicable to the present material. The Boolean

model [9], which permits extensive overlaps among

particles (see Fig. 2) is also not applicable. In the new

model described below, the particles are first gener-

ated according to the Boolean model, which enables

uniform distribution of particles. In the subsequent

step, the overlapping particles are pulled apart from

one another according to a repulsion law that allows

maximum overlap up to one tenth of the particle

diameter. This leads to a microstructure having uni-

formly distributed spherical particles that may have

inter-particle contacts but no significant particle over-

laps. Figure 7 shows a two-dimensional section

through a typical three-dimensional microstructure

simulated in this manner. It is worthwhile to compare

Fig. 7 with the schematic microstructures shown in

Figs 1 and 2. The details of the simulation steps of the
new model are as follows.

1523

(I) The volume of the three-dimensional micro-

structural space to be generated is specified depend-

ing on the average sphere size; typically, a cubic

microstructural volume having edge length of ap-

proximately 10--30 times average particle diameter is

sufficient to obtain meaningful statistical averages.

The simulated microstructural volume is periodic,

and therefore, there is no edge effect.

(2) The size frequency function of the spheres is

specified in terms of a histogram representation hav-

ing 50 regularly spaced size classes. The absolute

number of spheres in a given size class is directly

proportional to the particle volume fraction to be
simulated.

(3) The particles are then generated one by one

according to the Boolean model [9], where the particle

centroids are randomly located in the microstructural

space and particles are allowed to freely overlap.

(4) The overlap vector of a pair of overlapping ith

and jth particles V o is defined as the shortest vector

displacement of the centroid of the ith particle necess-

ary to completely separate the overlapping ith and

jth particles.

(5) The particles are analyzed for overlap one by

one. Suppose that there are a total of N particles and

the n th particle is being analyzed, then its overlaps

with only the next (N - n) particles in the queue are

analyzed; the overlaps with the first (n - 1) particles

were analyzed when these particles were under atten-

tion. This scheme eliminates redundancy and makes

the computation more efficient.

(6) Suppose the nth particle overlaps with the ith,

jth and kth particles (where, i,j and k > n), then the

net displacement vector of the nth particle, V, is given

by the following equation.

V. = _',, + V,v + V,,k]/M. (1)

The three displacement vectors on the right-hand side

of equation (1) pertain to the overlap vectors for the

particle pairs n and i, n and j, and n and k, as defined

in step (4). Repulsion strength, M is one of the

parameters of the model. In the present study, M was

set to be equal to 2. Figure 8 illustrates the geometry

involved in equation (I).

(7) The net displacement vector [step (6)] is calcu-

lated for all the overlapping particles in the system,

_4T

12 +

l':i1°

0 t = = z "---"--".... _ ___

1 lO 10CI

Fig 6.Sizedistributionof carbon particles.
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Fig. 7. Two-dimensional section through typical microstructure simulated from new model. Note that the
particles touch, but do not overlap significantly.

and the centers of these particles are shifted by the

corresponding net vector displacements.

(8) After the overlapping particles are displaced by

their corresponding net vector displacements, the

overlap vectors of all the overlapping particle pairs

(in the new spatial arrangement) are recalculated, and

a)

b)

Fig. 8. Definition of the net displacement vector.

the magnitude of maximum particle overlap, 3, is

calculated.

(9) The maximum permissible particle overlap, _,

in the final microstructure is an input parameter of

the model whose value has to be specified. In the

present case, _, was set to be equal to one tenth of the

average particle diameter. If z > _ then, the steps

(5)-(8) are repeated as the next iteration of the

simulation. These iterations are continued until the

actual maximum overlap r reaches a value lower than

the set maximum value _ ; at that point the simulation

is terminated. Figure 7 shows a two-dimensional

section through a typical three-dimensional micro-
structure simulated in this manner.

Adjustable model parameters

The maximum permissible particle overlap, t, and

the repulsion strength, M, are the adjustable par-

ameters of the model. The rate of convergence of the

simulation (i.e. number of iterations after which

actual maximum overlap, r is less than _) depends on

these two parameters. As _ approaches zero, the

necessary number of iterations approaches infinity. In

such a limiting case, the simulated microstructure

reaches a stage where only tangential point contacts

between the particles are allowed. A very large value

of _ leads to a simulated microstructure having

extensive particle overlaps (as in the Boolean model),

which is not realistic in the present context. A value

of _ equal to one-tenth of the average particle diam-

eter yields microstructure that is close to the actual

microstructure, and permits completion of simulation
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Fig. 11. Experimental and simulated nearest neighbor distri-
bution function on a two-dimensional section.

one face of the specimen to another face. If there is

not a single particle chain connecting the two faces of

the specimen, then the conductivity is expected to be

zero. Thus, there is a microstructural percolation
threshold: there exists a critical volume fraction of the

particles f* below which the probability of the for-

mation of a continuous particle chain is almost zero,

and consequently the electrical conductivity is also

zero. This critical volume fraction f* depends on the

size distribution of the particles.

As the particle volume fraction fincreases beyond

f*, there are more continuous pathways for the

electrical conduction, and more particles participate

in the conduction process. In this stage, the conduc-

tivity is a direct function of the volume fraction of the

particles that actually participate in the conduction

process. This is illustrated in Fig. 12. In this figure,

the bright particles are not connected to any chain,

and therefore they do not participate in the conduc-

tion process. The black particles that form continu-
ous chains contribute to the electrical conduction.

The cross-hatched particles touch the chains formed

by black particles, but they do not contribute to the

electrical conductivity. A particle actively participates

in the electrical conduction process if and only if from

that particle one can travel through the particulate

phase in at least two distinctly different directions

(each path through different inter-particle contact

belonging to the same particle) and reach the two

external surfaces of the specimen across which an

electrical potential is applied, without ever leaving the

particulate phase. Therefore, the most simple micro-

structural parameter that is relevant to the electrical

• Particles that belong to the main cluster
and effectively participate to the electrical conductivity

• Particles that belong to the main cluster
but do not participate to the electrical conductivity

C) Particles that do not belong to the rnam cluster

Fig. 12. Identification of the particles that take part in the
electrical conduction

conduction process is the volume fraction f¢ of only

those particles that actively participate in the conduc-

tion process according to this definition. To the best

of our knowledge, there is no experimental technique

to identify in the material microstructure the particles

that are effective in the conduction process, and

therefore the effective volume fraction f_ cannot be

experimentally measured. However, such particles

can be identified in a computer simulated microstruc-

ture, and their volume fraction f_ can be calculated.

It has been shown that the overall spatial arrange-

ment of the particles in our simulated microstructures

is a reasonable approximation for that in the corre-

sponding actual microstructures (see Figs 9-11).

Thus, the effective volume fraction f, in the real

microstructure can be approximated by its value in

the simulated microstructure. Figure 13 shows a plot

of the effective volume fraction f_ versus the overall

particulate volume fractionf. The percolation volume

fraction f* is equal to 0.26. Note that for f<f*,

f_ = 0. There is a discontinuous jump in the effective

volume fraction, ._ at f =/'*. As the overall particu-

late volume fraction f increases beyond the percola-

tion volume fraction f*, the effective volume fraction

:Ii ! .. .........l

l j04 *

0.2" .........,'"'"

0 ,._:ii ........

o o_ oa oo o_ l

Volume fnu:uon, f

Fig. 13. Plot of effective volume fraction f, versus the overall
particulate volume fraction. L
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f_ approaches the overall particulate volume fraction

f The following empirical equation represents the
computed data in Fig. 13 quite well

f_=2.78(f+O.21)Q4-2.0 for f >f*. (2)

The relationship between the effective volume frac-

tion and overall global volume fraction f, is the

necessary input for the self-consistent model for

electrical conductivity discussed below.

MODEL FOR ELECTRIC CONDUCTIVITY

There are a number of theoretical treatments that

predict the bounds on the electrical conductivity of

two-phase composites. The most simple treatment is

the one due to Voigt and Reuss [14]. The composite
has maximum possible conductivity when the two

phases are stacked in the form of alternate parallel
slabs extending from one end of the specimen to

another, and the electrical current is applied parallel

to the slabs; the conductivity is minimum when the

applied current is perpendicular to the slabs (the two

arrangements can be visualized as "series" and "par-

allel" configurations of the resistors). These bounds

depend only on the volume fraction of the two

phases. Hashin and Strikman [15] have given tighter

bounds than those of Voigt and Reuss, however,

these bounds are also completely determined by
volume fraction of the two phases.

Landauer [16] has given a model for the estimation

of electrical conductivity of two-phase composites

where the two phases are randomly distributed and

isotropic (i.e. no preferred orientation). Although,

Landauer's derivation is based on the assumption
that the particulate has a spherical shape, the result-

ing expression for electrical conductivity is expected

to be a good approximation for any two-phase

isotropic microstructure having random distribution

of the two phases. Landauer [16] has given the

following expression for estimation of the electrical

conductivity, P of a two-phase composite material

containing particulate

P = [(3f_ - I).P_ + (3f2 - I)'/2 + {[(3f, - 1).P_

+ (3f: - 2)./'2]2+ 8.P_.P2}'2]/4. (3)

In equation (3), P_ and P2 are the electrical conduc-

tivities of the particulate and the matrix, respectively,

and f_ and A are their volume fractions. Obviously,

Z +A = 1. (4)

In the Landauer's model it is assumed that all the

particles contribute to the electrical conduction,

which is reasonable if the conductivities of the par-

ticulate and the matrix are not drastically different.

However, in the present composite, the conductivities

of the carbon particles and the resin matrix differ by

sixteen orders of magnitude. Therefore, a particle can

contribute to the electrical conduction if and only if

there is a continuous path that goes through two

different inter-particle contacts of the same particle,

and connects opposite faces of the specimen across

which an electrical potential is applied (see Fig. 12).

The particles that do not satisfy this condition do not

contribute to the conduction process, and hence they

can be regarded as a part of the matrix, for estimation

of the electrical conductivity. Therefore, for the pre-

sent composite, the volume fractions fl and fz in

equation (3) must be appropriately interpreted: fj

should be equal to the effective particulate volume

fraction f_, and f2 is equal to (I -f_). Further, in the

present case, the electrical conductivity of the matrix,

P2 can be equated to zero. With these changes,

equation (3) takes the following modified form

P=0 for 0 _<f_ _< I/3

P=(3f_-I).Pj/2 for 1/3 _<f_ < !. (5)

Equation (5) predicts that the electrical conductivity

should increase linearly with the effective particulate

volume fraction, forf_ > !/3, and it should be equal

to zero for the effective volume fraction less than i/3.

Substituting the valuef_ equal to i/3 in equation (2)

yields, f=0.42 for the percolation threshold for

electrical conduction. Recall that morphological per-

colation threshold for the initiation of the formation

of continuous particle chains (i.e. f*) occurs at the

particle volume fraction equal to 0.26. Therefore, the

morphological percolation threshold and the percola-

tion threshold for electrical conduction predicted by

Landauer's equation are not equal. The morphologi-

cal percolation threshold gives the particulate volume

fraction at which the continuous particle chains begin

to form. At this stage, the conductivity is non-zero in

one direction (where a continuous chain has formed),

and it is zero in all other directions. However, for

isotropic electrical conduction, it is essential to have

a number of continuous particle chains randomly

oriented in three-dimensional space, and this is

achieved only at a volume fraction higher than that

for morphological percolation threshold. Landauer's

equation assumes isotropy in electrical conduction.

and therefore, it is applicable only after a sufficient

number of continuous particle chains are formed.

Due to this reason, Landauer's equation predicts a

percolation threshold for electrical conduction

(f= 0.42) that is higher than the morphological

percolation threshold for the formation of continu-

ous particle chains (f = 0.26).

Equation (5) predicts that forf_ > I/3, the electrical

conductivity varies linearly with the effective particu-

late volume fractionf_. Further the slope of the linear

portion of the plot should give the effective conduc-

tivity of the particulate phase. Figure 14 shows the

plot of experimentally measured electrical conduc-

tivity vs the effective particulate volume fraction f,.

The values of f_ were obtained from the global

volume fraction f by using the curve in Fig. 13,

obtained from computer simulations. The data is in

good agreement with the predictions of equation (5).
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Fig. 14. Plot of electrical conductivity versus effective vol-
ume fraction f_.

The conductivity is zero for effective particulate

volume fraction less than about 0.33, as predicted.

However, the slope of the linear region of the plot

yields 43 S/m for the effective conductivity of the

carbon particulate phase, which is lower than the

reported bulk conductivity of carbon (200 S/m) by a

factor of five or so. This is not surprising, because the

inter-particle contact resistance is expected to be

significantly higher than the bulk electrical resistance.

Thus, the effective conductivity of the particulate

reflects the conductivity of the inter-particle contacts

rather than the bulk conductivity of carbon. It fol-

lows that the calculated value of 43 S/m essentially

represents the conductivity of the inter-particle
contacts, and therefore it is reasonable.

CONCLUSIONS

Computer simulation of a three-dimensional

rnicrostructure is useful to quantify the microstruc-
tural attributes associated with the "connectedness"

that are difficult to measure experimentally. In this

study, computer simulated three-dimensional micro-

structures were used to estimate the morphological

percolation volume fraction for electrical conduction,

and particulate volume fraction that is effective in the
electrical conduction in a polymer matrix composite.

These calculated values are successfully utilized to

predict the conductive particulate volume fraction

dependence of the electrical conductivity in a polymer

matrix composite where the matrix is dielectric.
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